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Low Level Segmentation for Imitation Learning Using 
the Expectation Maximization Algorithm 

 
Midshipman 1/C Andrew D. Warner 

United States Naval Academy 
 
1  Introduction 
 
 Imagine a robot that is able to develop skills on its own, without being 
programmed directly. This robot would be invaluable in any business, factory, or 
laboratory.  Unfortunately, this problem, known as inductive learning, is very difficult, 
and has several varieties. One such is imitation learning.  The overall process of imitation 
learning begins with one robot observing another robot performing a task.  The watcher 
then breaks down, or segments, the demonstrating robot’s actions into basic actions 
called planning units.  Next the observing robot uses the planning units to create a plan 
that accomplishes the required task.  The execution of a successful plan demonstrates that 
the robot has correctly implemented an inductive learning process.  The scope of this 
research does not allow the problem of imitation learning to be discussed in its entirety; 
however, it does investigate an important subset of the larger problem.  This paper 
focuses on the segmentation of the data, specifically how to break it up into the steps that 
provide the building blocks of the robots ultimate plan.  
 
2  High Level Problem[1] 
 
 Imitation learning is a process by which a robot learns to plan through 
demonstration and imitation.  The goal of inductive learning is to create a plan.  In this 
paper, planning refers to how the robot sequences planning units to accomplish the task at 
hand.  Imitation learning involves two levels, low and high.  The high level involves 
sequencing the planning units to create a plan.  In most implementations of imitation 
learning the robot is preprogrammed with the planning units needed to create the plan.  
Low level imitation learning focuses on learning the planning units.  In low level 
learning, the planning units are unknown and the robot must first determine what they are 
in order to create a high level plan.  High level learning that ignores low level issues has 
been well explored [2,3].  However, in a true imitation scenario, a robot must first learn 
the basic operations required to complete a task before it can learn how to sequence them 
to solve the problem.   
 For example, if a machine needed to create a plan to pick up a rock and move it 
across the room, the machine would need the planning units for moving, picking up, and 
setting down.  The planning unit “pick up” is made of low level actions such as moving 
the arm, grabbing onto the rock, lifting the rock, and holding the rock.  Each planning 
unit is composed to many low level actions; these actions are what low level imitation 
learning take into effect.   
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This paper focuses on how to segment the observed data into the actions that 
create the planning units.  This is the first step in beginning to understand low level 
issues.  If the observing robot is going to imitate the demonstrator’s actions, then it needs 
to understand what those actions are.  With our research we attempted to create a method 
that is able to analyze the observed data and break it up into basic movements or actions 
that can be used to create the planning units which are ultimately used to create the final 
plan.  This research provides the foundation for implementing low level imitation 
learning. 
  
3  Proposed Solution 
 
 The process of breaking up the observed data into the basic actions is called 
segmenting.  Segmenting is traditionally done by hand.  The designer looks at the data 
and determines where the actions begin and end.  It can also be done through heuristics, 
meeting a predetermined set of conditions which dictate when an action is complete.  
Another way to segment would be to have the demonstrator send a signal whenever a 
basic step is complete this provides direct guidance on when to segment.  However, this 
requires the cooperation of the demonstrator and prevents completely independent 
learning.  An additional approach to segmentation is to use the statistical properties of the 
data.  This method is based upon the idea that every basic step is composed of continuous 
and repetitive actions that change in character when the steps are completed.  It appears 
that points of discontinuity in the data indicate the breakpoints between actions.   
 The data collected from the demonstrating robot is in vector form.  Each vector 
contains several numbers that represent the states of the robots motors.  We believe that 
throughout a particular action the states of the motors remain relatively constant.  
Segmenting the data will break it up into groups with similar properties.  Each of these 
groups will represent a low level action.  By segmenting the data, we will know which 
data points represent a particular action.    
 This paper discusses the four methods studied to segment the observed data using 
its statistical properties.  Throughout the course of the research we evaluated Decision 
Trees, Bayesian Networks, Kalman Filters, and the Expectation Maximization algorithm.  
Each of these methods had different strengths and applications; however, for the project, 
we chose to implement the Expectation Maximization algorithm (EM).   
 
4  Methods Studied[4] 
 
4.1  Decision Trees 
 

A decision tree outlines the process for making decisions and provides a simple 
and easy to understand introduction to inductive learning.  The basic units of a decision 
tree are sets of attributes that describe a situation or an object.  The simplest version uses 
Boolean attributes (attributes with a true or false answer).  The tree, as shown in figure 
4.1.1 is a hierarchical set of questions used to classify data.  The tree is created using 
several different data points; the more data the more accurately the tree can make  
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decisions.  There are many different ways to create a decision tree and many different 
trees can be created using the same data.  The trick is to make the tree as small and 
simple as possible by testing the most important attribute first.  A simple algorithm, 
which works well on small data sets, creates decision trees by combining the attributes in 
every possible order, i.e. forming every possible tree.  Note that not every attribute must 
be used in the creation of the tree.  For example, in figure 4.1.1, the attribute Bounce is 
not necessary in tree A.  Next a greedy algorithm goes through and selects the shortest 
tree.  The greedy algorithm simply compares two trees and then keeps the one that is 
shorter.  The algorithm compares every tree and is not efficient, but it is adequate for this 
example.  More efficient algorithms use information theory to select the most useful 
attributes for the root of the tree.  Figure 4.1.1 shows two trees created using the same 
data.  Both trees are correct; however tree A is obviously shorter and simpler then tree B.   
 Decision trees are designed for data that can be labeled or expressed with 
propositions.  In “How To” manuals and trouble shooting guides the data is labeled, 
consequently they are often written like a decision tree.  However, Decision Trees are 
impractical for our situation because the data is unlabeled.  Our data consist of several 
numbers in vector form, it is not easily labeled.  Decision trees, while not a practical 
solution to our problem, provide an easily understood introduction to learning algorithms. 
 
4.2  Bayesian Networks 
 
 Bayesian Networks are a type of directed graph useful for concisely showing 
conditional probability distributions.  Each node in the graph is conditionally dependent 
on its parents and independent of its children.  In conditional probability, a is 
conditionally dependent on b because the existence of b alters the likelihood of a.  This is 
represented mathematically as P(a|b) = x, and means that the probability of a given that  
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Figure 4.2.1: Bayes’ Rule 

 
 
only b is known is x.  Bayes’ Rule, derived in figure 4.2.1, is the method used to solve 
conditional probabilities.  Bayesian networks provide a visual representation of the 
probabilities solved by Bayes’ Rule.   
 While Bayesian networks are a concise way of visually representing conditional 
probability, they are not a practical solution for the segmentation problem.  Visually 
representing the data is not necessary because we are trying to discover the distributions 
of the data.  While knowing the conditional probabilities of the data would be nice, we 
want to be able to segment the data into basic actions, and it is unlikely that conditional 
probabilities alone will allow us to do this.  
 
4.3  Kalman Filters 
 
 Kalman filters predict the next state of a system based on a linear function with 
Gaussian noise added.  For example, assume that an 8-ball is rolling across a pool table.  
This motion is the linear function.  In a perfect world, the ball would continue on its path 
and the linear function would always predict the ball’s exact position.  However, in an 
imperfect world there is always variance in the ball’s motion; other balls, the table rail, or 
an unleveled table.  This variation in the ball’s movement is not accurately modeled by a 
linear function; adding Gaussian noise to the function creates a more accurate model.  
Kalman filters use conditional probability to change the Gaussian variance to model the 
actual movement of the ball.  If the ball were to bounce off of the table’s rail, the model 
adjusts to fit ball’s new motion.    
 The way that Kalman filters modify the Gaussian is similar to the EM algorithm; 
however, Kalman filters are used for modifying linear functions.  We believe that our 
data does not reflect a linear function but is better represented by a cluster of data points.  
Kalman filters are important because of their ability to update the Gaussian variance 
which provides the foundation for the EM algorithm. 
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Figure 4.4.1: Simplification using ln() 

 
 
4.4  Expectation Maximization Algorithm (EM) 

 
The purpose of the EM algorithm is to learn hidden variables.  For a variable to be 

a hidden variable it must not be observable within the available data.  Many real world 
problems have hidden variables in them.  For example, if someone has a heart disease, 
the disease itself is not observable; however, the symptoms and causes are.  Using the 
variable heart disease ties all of the symptoms and causes together and greatly simplifies 
the conditional probabilities.  The EM algorithm outlines a process for discovering values 
for these hidden variables.  Because it is a process, the algorithm can be applied to many 
different situations and data.  For our research we chose to study the EM algorithm as it 
applies to a mixture of Gaussian distributions.  A mixture of Gaussians refers to several 
different distributions that represent a group of data.  Each data point belongs to a 
specific Gaussian; however, the combined data is accurately modeled by the several 
Gaussian distributions.  Thus, the data is represented by a mixture of Gaussians. The 
brilliance of the EM algorithm is that, when given a seemingly random set of points 
generated by several independent Gaussian distributions, it will very nearly recreate the 
original Gaussian distributions.  
 The EM algorithm uses an iterative process that is initialized with random 
numbers.  For example, in the case of the mixture of Gaussians, each Gaussian’s mean 
and covariance matrix are initialized with randomly.  Each cycle through the algorithm 
adjusts the means and covariance matrix, bring them closer to the correct values.  Every 
iteration of the EM algorithm is guaranteed to be a more precise estimate because this 
algorithm maximizes the likelihood of the multi-dimensional Gaussian probability 
function.  Likelihood, in this paper, refers to the log of the probability function.  Taking 
the log of this function enables us to replace multiplication with addition, making the 
equation easier to work with when taking the derivative.  Figure 4.4.1 shows what 
happens when the log of the multidimensional probability is taken.  Maximizing the 
likelihood guarantees a better estimate after every iteration.   
 There are two basic steps to EM, the E-step and the M-step.  The E-step computes 
the probability of the current mean and covariance of each Gaussian given the data.  The 
M-step then maximizes the probability that Gaussians generated the data by adjusting the 
mean and covariance matrices.  This process will be explained in greater detail later in 
this paper. 
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Figure 5.0.1: Multivariate Gaussian Distribution  

  
 
  

After studying the methods discussed above we determined that the EM algorithm 
is the best match for our research.  Our data consist of unlabeled vectors that are tied 
together by Gaussian distributions.  As discussed earlier, the Gaussian implementation of 
EM is designed to handle this type of data.  Thus, because the EM algorithm can be 
applied to our problem we choose to implement it to segment the data.  If the EM 
algorithm works, it will find a set of parameters for a mixture of Gaussian distributions 
that will define each of the basic steps (we assume that the data points representing each 
action will cluster into Gaussian distributions).  With those distributions the robot will be 
able to properly segment the data and begin building plans that incorporate the newly 
learned actions.   
 
5  Implementation 
 
 In order to understand the EM algorithm, we first implemented it on a set of two-
dimensional Gaussian distributions with known means and covariance matrices.  We 
began with the simplest multidimensional example in order to understand the algorithm 
before progressing on to implementing the dimensions of the data. 
 The first step to implement the EM algorithm was to create a valid set of test data.  
This data was generated using the function in figure 5.0.1.  As inputs, this function takes 
a data matrix (x), a mean matrix (µ), and a covariance matrix (є). The covariance matrix, 
which describes the shape of the Gaussian function, is symmetrical along the diagonal 
and its length and width are equal to the number of dimensions of the problem.  The 
mean and data matrices have a variable for every dimension and are stored as one column 
matrices.  The mean matrix indicates where the Gaussian function is centered.  Each 
Gaussian distribution has one mean and covariance matrix that is constant, these matrices 
defines the distribution.  Figure 5.0.1 shows the x, µ, and є for a two-dimensional 
Gaussian distribution  
 The test Gaussians were formed by choosing random numbers for the mean and 
covariance matrices.  The resulting plot is shown in figure 5.0.2.  The x and y values are 
from the data points entered into the function.  The z value is generated by the Gaussian 
function; it represents the probability that that point was generated by the Gaussian.  The 
z values give each point its height which gives the graph its hill shape.   
 Next we created thousands of random points with x, y, and z values.  The z values 
were compared to the answer of x and y being plugged into the Gaussian.  If the  
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randomly generated z value was less then or equal to the z values generated by the 
Gaussian, then the (x, y) point was accepted.  This process generates random numbers 
drawn from the Gaussian distributions; it is illustrated with the one dimensional example 
in figure 5.0.3.  Points below the bell-curve are considered to be part of the Gaussian and 
are accepted. 

After repeating the data generation process three times, to create three 
independent and random Gaussians, we had created the test data necessary to implement 
a two dimensional Gaussian version of the EM method correctly.  The x and y values of 
the test data are plotted in the graph in fig 5.0.4, the three major groups represent the 
three Gaussian distributions.  This graph is the raw data.   
 With the two dimensional data available, we began implementing the EM 
algorithm.  As written earlier, the two basic steps in the EM algorithm are the E and M-
step.  In the E-step the expected probabilities of the Gaussians based on the data is 
generated.  The M-step then maximizes the mean and variance in order to best represent 
the data.  Because the M-step maximizes the likelihood of the data, every pass through 
the EM algorithm improves the probability that the new mean and variances were 
generated by the data.  After several passes through, the means and variance represent the 
data better than the original Gaussians that generated them.  This is because the randomly 
generated data is an incomplete representation of the Gaussian that created it and 
accurately modeling it requires a different Gaussian than the one that created it.  The 
more points that are available for analysis, the closer the Gaussian generated by the EM 
algorithm will represent the original mean and covariance. 
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Figure 5.1.1: Using Bayes’ Rule to solve for Pij 

 
 
5.1  E-Step   
 
 Simply put, the E-step calculates the probability of the data generating each 
Gaussian.  Figure 5.1.1 uses Bayes Rule to break down the derivation of the E-step, 
which is explained in the following paragraphs. 
 The E-step is relatively simple to implement.  The first iteration through the 
algorithm uses randomly generated means, variances, and component weights as starting 
points.  Because we know that the data was generated by three distributions, three 
Gaussians are used in the E-step (i=3).  Knowing how many Gaussians to use in the E-
step is one of the trickiest parts of using EM.  Using too few results in the exclusion of 
some of the data and using too many results in several Gaussians covering the same set of 
points.  The only way to figure out how many Gaussian distributions are present is to 
either plot the data and infer the number (figure 5.0.4 clearly shows three distributions), 
or to work the algorithm several times and try to deduce when the right number of 
Gaussians have been discovered. 
 Once the number of Gaussians has been decided and the initial means, covariance 
and component weights have been created, it is time to solve for Pij, the probability that 
the ith Gaussian was created by the jth data point, xj.  This process begins with Bayes’ 
Rule.  Using Bayes’ Rule breaks Pij down into probabilities that can be calculated (figure 
5.1.1).  P(xj | c=i) is the probability that xj was generated by Gaussian c=i, it is calculated 
by plugging xj and the values for Gaussian c=i into the multi-dimensional Gaussian 
function in figure 5.0.1.  The component weight (ωi) is the percentage of the data that the 
distribution covers.  It is updated in the M-step.  The last element necessary to complete  
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Figure 5.2.1: M-Step 

 
 
Bayes’ Rule is P(xj).  The math shown in figure 5.1.1 provides a solvable answer for 
P(xj).  Now that all the information necessary to solve for Pij is available, the E-step can 
be accomplished.   
 Every Pij is calculated, and then the Pi values, the sum of the Pij for each Gaussian 
(c=i), are calculated using the formula in figure 5.1.2. 
 
5.2  M-Step 
 
 In the M-step the new mean, covariance and component weights are computed.  
Figure 5.2.1 breaks down the M-step, which is explained in the following paragraphs.   

The component weight (ωi) is unique for each Gaussian. It is the probability that 
the Gaussian was generated by the data.  For example, if the Gaussian contains 25 data 
points out of 100, then ω = .25.  The component weight is equal to the Pi value for each 
Gaussian divided by m (the total number of data points).  Because the data is Gaussian 
the sum of all Pi must equal one. 

 In order to compute the new mean for each Gaussian each data point (xj, which is 
a d x 1 vector where d is the number of dimensions of the problem) is multiplied by the 
ratio Pij / Pi, as calculated in the E-step.  The Pij / Pi ratio determines how likely xj is 
included in the ith Gaussian.  The new mean (µi) is calculated by summing Pij / Pi * xj for 
all j.   

The new covariance matrix (є i) is calculated in the same manner as µi.  The same 
ratio (Pij / Pi) is used. However, because є i is a d x d matrix, additional calculations must 
been performed to create a d x d matrix out if a d x 1 matrix.  Furthermore, є i must be 
symmetrical along the diagonal.  In order to have both of these properties hold true, the 
covariance is created by multiplying (xj - µi) by (xj - µi)T.  The T means that the matrix is 
transposed.  So in the M-step, transposing the second d x 1 matrix creates a product that 
is a d x d matrix (d x 1 matrix * 1 x d matrix = d x d matrix) and is symmetrical along the 
diagonal.  The subtraction (xj - µi) is done to keep the values of the covariance matrix 
from becoming so large that they cover every data point.     
 These new mean, covariance, and component values are then passed back to the 
E-step and the process is begun anew.  After about ten iterations of the EM algorithm the 
mean, covariance, and component values become relatively constant between iterations 
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and are almost identical to the initial distributions.  This means that our implementation 
was correct and it is time to begin implementing the data. 
 
5.3  Implementation on Problem Data 
 
 When we apply the EM algorithm to our segmentation problem, we are expecting 
certain results.  We believe that the mean and covariance matrices will create Gaussian 
distributions that model the data that performs a specific action.  This way, by applying 
the Gaussian function in figure 5.0.1 with the newly derived mean and covariance 
matrices we will be able to determine when each action starts and stops.  Inserting the 
start and stop points will segment the data into the actions that make up the planning units 
referred to in section 2. 
 
6  Methods  
 
  To implement the EM algorithm we wrote a C++ program.  We used a header file 
downloaded from www.techsoftpl.com that performs the necessary matrix calculations.  
The file is written so that the user inputs the number of Gaussian distributions contained 
within the data along with the number of dimensions that the problem data is in.  For 
example, if the data is in five columns then the data is in five dimensions.  The program 
reads in the data and prints out the values for each Gaussian distribution after every 
iteration of the algorithm.  The algorithm performs 10 iterations and then finishes, 
printing the final distributions to the screen.   
  
7  Results 
 
 The first set of data analyzed contained four dimensions.  Two of the dimensions 
represented the motor movements of wheels, their values ranged from zero to one.  The 
other two dimensions represented the robot’s arm movements.  Their values were either a 
one or a zero.  While running the algorithm on the data, the generated covariance matrix 
shrank to zero and the probabilities of the data became infinite.  This occurred because 
the arms data contained only three possible values, (0,0), (0,1), or (1,0).  This essentially 
created three separate points instead of three separate distributions.  If a Gaussian zeroes 
in on a single point its variance shrinks to zero.  This happens because the variance is 
designed to form a net around all of the points in the distribution; this net dictates which 
points belong to the distribution and which ones do not.  A distribution that contains only 
one point needs a very small variance.  When the variance gets this small, the probability 
of the point within the Gaussian becomes infinite.  This crashes the algorithm.   
 After realizing this, we decided to remove the data containing the arm 
movements.  Now the data is only two dimensions, a plot of it is shown in figure 7.0.1.  
Running the EM algorithm on this new set of data yielded predictable answers.  There are 
obviously three major distributions amongst the data, and the EM algorithm could find 
them.  However, EM did not always return the same set of Gaussian distributions.  For 
example, the algorithm would sometimes split the data in the lower left corner of the 
graph amongst two distributions, or one Gaussian would cover the left side of the graph  
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and the other two would cover the right side of the graph.  In certain conditions, all of the 
Gaussians would center themselves in the middle of the graph.  The above situations 
were a result of where the means of the distributions were initialized.  Because the data 
on the graph was so dense, the distributions often changed their mean values only slightly 
and expanded their covariance matrices to cover as many points as possible.  This could 
be avoided if the data was less dense.   
 Also, after graphing the two dimensional motor data, there appears to be a linear 
function in the lower left corner of the graph.  To accurately model this data, a Kalman 
filter should be implemented. 
 
8  Conclusion 
 
 After analyzing the available data, we have concluded that further testing is 
needed.  The data could be segmented in the two dimensional implementation.  However, 
the data was unable to be segmented in four dimensions.  This was a result of having only 
a one or zero value for the arm movements.  In order to fully conclude if using the EM 
algorithm is a viable way to segment the low level actions of a demonstrating machine, 
more data should be tested.  This other test data should have a greater diversity amongst 
itself, i.e. no one or zero components.  In conclusion, the EM algorithm should be tested 
more thoroughly before concluding that it is unable to segment the imitation learning 
data.   
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